337653(37)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Mechanical Engg. Branch)

INTERNAL COMBUSTION ENGINES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) & (d).

Unit - I

- 1. (a) Draw the suitable sketches of following type of cylinder arrangements:
 - (i) Opposed piston engine
 - (ii) Radial engine
 - (b) Explain reasons of Ignition & Injection Advance?

 Draw the value timing for four stroke C.I. & S.I.

		[2] Engine with neat sketch.	7
	(c)	Write the comparison between four stroke S.I. & C.I. Engine.	7
	(d)	Explain pumping looploss & burning time loss with neat sketch.	7
		Istamull Unit - III mails IV	
2	(a)	Define cetane number?	2
	(b)	Write short notes on the following: (i) Carburettor Icing	7
		(ii) Crank case dilution	
	(c)	What is ASTM distillation curve? How it is obtained?	7
	(d)	Define performance number & Dopes? Explain CCR, HUCR & vapour lock?	7
		VI galvadlad in Unit - III dangs and second	
3.	(a)	Define carburetion.	2
	(b)	What is meant by Idling? Explain why rich mixture is required for Idling. Describe with suitable sketch,	

3	ı

	(c)	What is nozzle tip? Explain with a neat sketch the working of a simple carburetor?	
	(d)	What is the necessity of gasoline injection? Describe briefly the MPFI system with a neat sketch?	
		Unit - IV	
4.	(a)	Define atomization?	2
	(b)	Explain Bosch fuel injection pump with neat sketch?	7
	(c)	Define Governing? Explain Quantity governing with neat sketch?	7
	(d)	Explain magneto Ignition system with neat sketch.	7
		Unit - V	
5.	(a)	Define Brake Power & Indicated power?	2
	(b)	Explain Willan's line method with neat sketch?	7
	(c)	The following observating were recorded in a test of one hour duration on a single cylinder oil engine working on four-stroke cycle	
		Bore = 300 mm, Stroke = 450 mm, fuel used = 8.8 kg, calorific value of fuel = 41800 kJ/kg, Average speed = 200 rpm m.e.p. = 5.8 bar, Brake	

idling system of modern carburetion.

friction load = 1860 N, Quantity of cooling water = 650 kg, Temp. rise = 22°C, Dia of brake wheel = 1.22 m, Calculate:

- (i) Mechanical efficiency
- (ii) Brake thermal efficiency

 Draw the heat balance sheet also.
- (d) A single cylinder 4 stroke engine (diesel) gave the following results while running on full load:

7

Area of indicator card = 300 mm²

Length of diagram = 40 mm,

Spring constant = 1 bar/mm

Speed of Engine = 400 r.p.m.,

Load on the brake = 370 N,

Spring balance reading = 50 N,

Dia of brake drum = 1·2 m,

Fuel consumption = 2·8 kg/h,

Calorific value of fuel = 41800 kJ/kg

Dia of cylinder = 160 mm,

Stroke of piston = 200 mm

Calculate:

- (i) Indicated mean effective pressure
- (ii) Brake power & Brake mean effective pressure
- (iii) Brake specific fuel consumption, brake thermal & Indicated thermal efficiencies.